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Recombinant severe acute respiratory virus (SARS-CoV) variants lacking the group specific genes 6, 7a, 7b, 8a,
8b and 9b (rSARS-CoV-Δ[6–9b]), the structural gene E (rSARS-CoV-ΔE), and a combination of both sets of
genes (rSARS-CoV-Δ[E,6–9b]) have been generated. All these viruses were rescued in monkey (Vero E6) cells
and were also infectious for human (Huh-7, Huh7.5.1 and CaCo-2) cell lines and for transgenic (Tg) mice
expressing the SARS-CoV receptor human angiotensin converting enzyme-2 (hACE-2), indicating that none of
these proteins is essential for the viral cycle. Furthermore, in Vero E6 cells, all the viruses showed the
formation of particles with the same morphology as the wt virus, indicating that these proteins do not have a
high impact in the final morphology of the virions. Nevertheless, in the absence of E protein, release of virus
particles efficacy was reduced. Viruses lacking E protein grew about 100-fold lower than the wt virus in lungs
of Tg infected mice but did not grow in the brains of the same animals, in contrast to the rSARS-CoV-Δ[6–9b]
virus, which grew almost as well as the wt in both tissues. Viruses lacking E proteinwere highly attenuated in
the highly sensitive hACE-2 Tgmice, in contrast to theminimal rSARS-CoV-Δ[6–9b] and wt viruses. These data
indicate that E genemight be a virulence factor influencing replication level, tissue tropism and pathogenicity
of SARS-CoV, suggesting that ΔE attenuated viruses are promising vaccine candidates.

© 2008 Elsevier Inc. All rights reserved.
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Introduction

The etiologic agent causing severe acute respiratory syndrome
(SARS) is a novel coronavirus (CoV) named SARS-CoV (Drosten et al.,
2003; Fouchier et al., 2003; Ksiazek et al., 2003; Kuiken et al., 2003;
Marra et al., 2003; Peiris et al., 2003; Rota et al., 2003). The disease,
which caused an average mortality of approximately 10% and for
which no defined therapy is available, was reported for the first time
in Guandong province, China, at the end of 2002, and rapidly spread to
32 countries. After July 2003, only four community acquired cases
were reported in China, although there have been three instances of
laboratory-acquired infections described (http://www.who.int/csr/
sars/en/).

Initial investigations indicated that SARS-CoV spread to humans
from infected wild animals in wet markets of Southern China, such as
Himalayan palm civets (Paguna larvatta) and Chinese ferret badgers
(Melogale moschatta) (Guan et al., 2003). Nevertheless, the recognition
of SARS-like CoVs in bats suggests that these species are most likely
the natural reservoir of SARS-CoV (Lau et al., 2005; Li et al., 2005).
Therefore, the reemergence of the virus remains a possibility and the
).

l rights reserved.
engineering of attenuated viruses as research tools and vaccine can-
didates is of high interest.

SARS-CoV is an enveloped virus of the Coronaviridae family, and
has a single-stranded, positive sense 29.7 kb RNA genome (Gorbalenya
et al., 2004; Snijder et al., 2003). Human coronaviruses have been
divided into different groups (Enjuanes et al., 2008b). Group 1 in-
cludes the human coronavirus 229E (HCoV-229E), generally asso-
ciated with the common cold, and HCoV-NL63, which causes more
severe lower respiratory diseases (Fouchier et al., 2004; Kaiser et al.,
2005; van der Hoek et al., 2004). Group 2 human CoVs include HCoV-
OC43, which has been associated with common colds, the recently
described HCoV-HKU1, which was identified in adults with pneumo-
nia (Woo et al., 2005), and SARS-CoV. Among human CoVs, SARS-CoV
causes the most severe disease (Weiss and Navas-Martin, 2005).

Coronaviruses replicate in the cell cytoplasm and encode a nested
set of mRNA molecules of different sizes. Viral genome expression
begins with the translation of two large polyproteins, pp1a and pp1ab,
including the viral replicase genes (Thiel et al., 2003). These genes are
involved in genome replication and transcription of subgenomic
mRNAs (sg mRNAs), encoding structural proteins such as the spike (S),
envelope (E), membrane (M), and nucleocapsid (N), and a set of group-
specific proteins, whose sequence and number differs among the
different species of coronavirus (Enjuanes et al., 2008b). In the case of
SARS-CoV, open reading frames (ORFs) 3a, 6, 7a, and 7b encode
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additional structural proteins (Huang et al., 2006, 2007; Ito et al.,
2005; Schaecher et al., 2007; Shen et al., 2005).

Genes 3a, 3b, 6, 7a, 7b, 8a, 8b and 9b of SARS-CoV are not found in
other CoVs and their functions in the viral cycle are not well
understood. Some of these genes are implicated in the pathogenesis
of the virus. Genes 6 and 3b inhibit interferon function (Frieman et al.,
2007; Kopecky-Bromberg et al., 2007). In addition, it has been shown
that SARS-CoV gene 6 accelerates murine coronavirus infections
(Tangudu et al., 2007) and enhances virulence of an attenuated
murine hepatitis virus (MHV) (Pewe et al., 2005). Similarly, it has
been shown that the group specific genes of other CoVs contribute to
the pathogenesis of the virus in vivo, but are not essential for viral
replication (de Haan et al., 2002; Ortego et al., 2003). SARS-CoV
proteins 3a, 3b, E, M, 7a, and 8a induce apoptosis via several
mechanisms (Chen et al., 2007; Khan et al., 2006; Lai et al., 2006; Law
et al., 2005; Schaecher et al., 2007; Tan et al., 2007; Yang et al., 2005).
Furthermore, induction of T-cell apoptosis by E protein may
contribute to the lymphopenia that is observed in SARS patients
(Yang et al., 2005). Coronavirus proteins M and E are key factors in
virus assembly and budding (Corse andMachamer, 2000, 2002, 2003;
de Haan et al., 1998; Fischer et al., 1998; Kuo and Masters, 2003). In
addition, we have shown that deletion of E protein leads to a loss of
virulence in hamsters (DeDiego et al., 2007). Furthermore, SARS-CoV
proteins 7a and 9b appear to be associated with intracellular vesicle
structures, suggesting a possible role in morphogenesis and replica-
tion (Meier et al., 2006; Nelson et al., 2005).

There is evidence that SARS-CoV group-specific genes can be
deleted individually with very limited or no impact on in vitro and in
vivo growth in a murine model (Sims et al., 2008; Yount et al., 2005).
Some of these genes may have redundant functions, as it has been
shown that genes 3b, 6, N, nsp1, and nsp3 may all act as interferon
antagonists (Devaraj et al., 2007; Frieman et al., 2007; Kopecky-
Bromberg et al., 2007; Wathelet et al., 2007). These results prompted
us to study the role of E gene in the context of full-length genome or
using a virus lacking six accessory genes (6, 7a, 7b, 8a, 8b, and 9b).

SARS-CoV infects and replicates in mice, ferrets, hamsters, cats,
and several species of non human primates (cynomolgus and rhesus
macaques, African green monkeys, and marmosets) (Subbarao and
Roberts, 2006). Nevertheless, an ideal animal model that completely
reproduces human clinical disease and pathological findings is still
missing. To overcome these limitations, several approaches have been
taken. In one of them, a mouse adapted SARS-CoV was selected and
Fig. 1. Rescue of SARS-CoV deletion mutants. Recombinant viruses were rescued by transfect
9b] virus. The 912-nt deletion that includes ORFs 6, 7a, 7b, 8a, and the 5′ end of ORF 8b is ind
codon and in two in phase downstream ATGs and by the introduction of a stop codon (chang
sequence; An, polyA tail. The mutations introduced to delete gene E were previously describe
shown to cause an infection that reproduced many aspects of severe
SARS (Roberts et al., 2007). Interestingly, in other approaches, Tg mice
expressing the host receptor for SARS-CoV, hACE-2, have been
developed (McCray et al., 2007; Tseng et al., 2007). These mice are
very susceptible to SARS-CoV and are especially useful for pathogen-
esis studies.

In this paper, the pathogenicity of a collection of SARS-CoV deletion
mutants, including those with deletion of the group-specific proteins 6,
7a, 7b, 8a, 8b and 9b, the envelope protein E, or a combination of both,
has been evaluated in a Tg mouse in which the expression of hACE-2
was targeted to epithelial cells. The data presented herein show that
genes E, 6, 7a, 7b, 8a, 8b, and 9b are not essential for in vitro and in vivo
replication even when all are simultaneously deleted. Interestingly,
viruses lacking gene E are attenuated and do not grow in the central
nervous system of hACE2 Tg mice, whereas virus lacking genes 6 to
9b, which is not significantly attenuated, grows in the brains of
infected mice as well as wt virus. Together, the data indicate that gene E
behaves as a virulence factor that contributes to pathogenicity by
favoring SARS-CoV replication within specific tissues.

Results

Rescue of rSARS-CoV-Δ[6–9b], rSARS-CoV-ΔE, and rSARS-CoV-Δ[E,6–9b]
viruses

To study the contribution of the group specific genes 6, 7a, 7b, 8a,
8b and 9b, and of the structural gene E to viral pathogenesis in hACE-2
Tg mice, viruses with these genes deleted were constructed using an
infectious cDNA clone assembled as a BAC (Almazan et al., 2006). To
abolish expression of genes 6 to 8b, a deletion comprising nucleotides
27065 to 27977, covering completely ORFs 6, 7a, 7b, 8a, and part of
ORF 8b was introduced (Fig. 1A). To abolish expression of gene 9b,
point mutations that abrogated the initiator ATG codon and two in
phase downstream ATGs, and one introducing a stop codon were
engineered (Fig. 1A). It was not possible to delete 9b gene, as it totally
overlaps with gene N, an essential gene for the virus replication
(Almazan et al., 2004). Expression of E gene was abolished as pre-
viously described (DeDiego et al., 2007).

Infectious viruses were rescued in Vero E6 cells transfected with
plasmids pBAC-SARS-CoV-Δ[6–9b], pBAC-SARS-CoV-ΔE, pBAC-
SARS-CoV-Δ[E,6–9b], or pBAC-SARS-CoVFL as a control, indicating
that genes E, 6, 7a, 7b, 8a, 8b and 9b are not essential for virus
ing SARS-CoV cDNA into Vero E6 cells. (A) Genetic organization of the rSARS-CoV-Δ[6–
icated in a light grey box. ORF 9b (darker grey box) was mutated by changes in the ATG
es are shown in grey and italics). Letters and numbers indicate the viral genes. L, leader
d (DeDiego et al., 2007). (B) Plaques produced by the indicated viruses on Vero E6 cells.
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viability. Nevertheless, smaller plaques were detected after infection
with rSARS-CoV-ΔE or rSARS-CoV-Δ[E,6–9b] viruses but not with
rSARS-CoV-Δ[6–9b] virus, suggesting that E gene is responsible for
this plaque phenotype (Fig. 1B). The viruses were cloned by three
rounds of plaque purification and amplified twice to obtain working
viral stocks. The viruses were sequenced to confirm that all point
mutations and deletions were maintained.

Growth kinetics of SARS-CoV deletion mutants

To analyze whether the deleted genes affected viral replication,
growth kinetics of the defective viruses were determined by infecting
different cell lines at a moi of 0.05. Deletion of genes 6 to 9b did not
reduce viral titers in monkey Vero E6 cells, whereas a reduction of 20-
fold was observed for viruses with E gene deleted (rSARS-CoV-ΔE and
rSARS-CoV-Δ[E,6–9b]) (Fig. 2A). Cytopathic effect was detected at 24 h
post-infection. Maximal virus titers were detected at 24–48 h post-
infection. In human CaCo-2, Huh7.5.1, and Huh-7 cells, titers decreased
between 5–10 and 100–1000-fold, for rSARS-CoV-Δ[6–9b] and rSARS-
Fig. 2. Growth kinetics of the defective viruses in monkey and human cells. Vero E6 (A),
CaCo-2 (B), and Huh7.5.1 cells (C) were infected at a moi of 0.05 with the indicated
viruses, and viral titers in cell supernatants at different times post-infection were
measured by plaque assay on Vero E6 cells. Error bars represent standard deviations of
the mean from three experiments.
CoV-ΔE or rSARS-CoV-Δ[E,6–9b], respectively (Figs. 2B and C, and data
not shown). In human cells, no cytopathic effect was observed, and
maximal titers were reached at 48–72 h post-infection. Although
titers of rSARS-CoV-ΔE or rSARS-CoV-Δ[E,6–9b] viruses in CaCo-2
cells are limited, an increase in virus titers of at least 5-fold was
observed at 24–48 h post-infection compared to 0 h post-infection,
indicating that the viruses replicate in this cell line. The similarity of
the growth kinetics exhibited by the ΔE and the Δ[E,6–9b] viruses
indicated that none of the accessory genes 6, 7a, 7b, 8a, 8b, and 9b
complemented any function of E gene required for replication in tissue
culture.

Morphogenesis of the defective viruses

The effect of deleting E, 6, 7a, 7b, 8a, 8b and 9b genes on viral
morphogenesis was examined using electronmicroscopy. The number
of intracellular mature virions present in the cellular cytoplasm was
lower in cells infected with viruses lacking E gene than in cells
infected with either rSARS-CoV or rSARS-CoV-Δ[6–9b] viruses, which
is consistent with the lower titers reached by ΔE viruses. Similarly, the
number of virions in the endoplasmic reticulum-Golgi intermediate
compartment (ERGIC) regions where nucleocapsid invagination
occurs (Ng et al., 2003), and in intracellular vesicles, where the virus
accumulates before budding, was lower in cells infected with ΔE
viruses (Fig. 3C and D) but not with rSARS-CoV or rSARS-CoV-Δ[6–9b]
(Fig. 3A and B). Together, these data suggest that the structural E
protein influences the efficacy of virus morphogenesis, whereas the
other accessory structural proteins 6, 7a, 7b, play a minor role in this
process.

Extracellular virion morphology observed in infected cells
ultrathin sections by electron microscopy (Fig. 4A) showed the
presence of virions with standard spherical morphology in all cases,
indicating that the E, 6, 7a, 7b, 8a, 8b and 9b proteins were not
essential for final virion morphology. Although the morphology of
the ΔE viruses was basically normal, a significant fraction of ellipsoid
particles was observed in preparations of rSARS-CoV-Δ[E,6–9b]
virus, suggesting that the E protein in conjunction with at least one
of the other six deleted proteins influences stability or final virion
structure. In the two ΔE mutants, a higher accumulation of virions
within the budding process was observed in relation to the viruses
with E protein (Fig. 4B). 62.5% of surface-associated ΔE viruses, as
compared to only 16.6% of E-containing viruses were captured in the
process of budding, strongly suggesting that E protein plays a major
role in this process.

Negative staining of concentrated virus preparations revealed
virions with spherical morphology in all of the mutants, corroborating
that none of these proteins were essential to form viral particles with
normal morphology. Nevertheless, disrupted particles were more
frequently seen in negatively stained ΔE virion preparations than in
those of rSARS-CoV-Δ[6–9b] virions (data not shown), suggesting that
these deletion mutants are more sensitive to mechanical shearing
forces.

Pathogenicity of SARS-CoV deletion mutants in Tg mice expressing
hACE-2

The pathogenicity of the defective viruses was evaluated in the Tg
mice expressing hACE2, which are highly susceptible to SARS-CoV
(McCray et al., 2007). Weight loss and mortality of animals in-
tranasally infected with 12,000 pfu were daily evaluated (Fig. 5). Mice
infected with rSARS-CoV or rSARS-CoV-Δ[6–9b] viruses rapidly lost
weight, in marked contrast to mice infected with rSARS-CoV-ΔE or
rSARS-CoV-Δ[E,6–9b] (Fig. 5A), suggesting that ΔE viruses were
attenuated in these mice. Furthermore, all animals infected with
rSARS-CoV or rSARS-CoV-Δ[6–9b] died by 5 and 6 days post-infection,
respectively, whereas those infected with viruses lacking the E gene



Fig. 3. Ultrastructural analysis of infected Vero E6 cells. Vero E6 cells were infected at a moi of 0.5 with SARS-CoV (A), rSARS-CoV-Δ[6–9b] (B), rSARS-CoV-ΔE (C), and rSARS-CoV-
Δ[E,6–9b] (D). At 24 h post-infection the cells were processed for electron microscopy of ultrathin sections. Mature virus particles (arrows) were detected in ERGIC sites and swollen
Golgi sacs that appeared as large vacuoles. Bars, 200 μm.
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survived (Fig. 5B), indicating that the ΔE viruses were fully attenuated
even in this highly sensitive animal model.

To further analyze rSARS-CoV-Δ[6–9b] virulence in hACE-2 Tg
mice, a range of virus doseswas used to inoculatemice (Figs. 5C and D)
and compared to those infected with wt rSARS-CoV. All mice lost
weight and died even at relatively low doses (800 pfu) of wt or rSARS-
CoV-Δ[6–9b] viruses. Only some mice inoculated with a very low
dosage (240 pfu) of either rSARS-CoV-Δ[6–9b] or rSARS-CoV,
survived. The survival and weight profiles were very similar for
mice infected with wild type or rSARS-CoV-Δ[6–9b] viruses suggest-
ing that rSARS-CoV-Δ[6–9b] was not significantly attenuated in hACE-
2 Tg mice.
Virus titers in lung (Fig. 6A) and brain (Fig. 6B) of animals infected
with 12,000 pfu of the indicated virus mutants were evaluated at 2
and 4 days post-infection. Titers were very high and nearly identical in
rSARS-CoV and rSARS-CoV-Δ[6–9b]-infected tissues, suggesting that
genes 6 to 9b have little effect on viral replication in these animals. In
contrast, titers in lungs of mice infected with the ΔE viruses were
about 100-fold lower, indicating that this gene is important for
efficient in vivo virus replication. Interestingly, no infectious virus was
detected in the brains of rSARS-CoV-ΔE and rSARS-CoV-Δ[E,6–9b]-
infected mice (Fig. 6B), even when the virus was intracranially
inoculated (data not shown). In contrast, rSARS-CoV-Δ[6–9b] virus
was detected at high titers in the brains of infected hACE2 Tg mice



Fig. 4. Morphology of extracellular SARS-CoV deletion mutants. (A) Electron micrographs of ultrathin sections showing extracellular viruses adjacent to the surface of cells infected
with the indicated virus. Bars, 200 nm. (B) Ultrathin sections showing the budding process for viruses with (left) and without (right) E protein. Bars, 50 nm.
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suggesting that the E protein is important for virus replication and
dissemination within this tissue.

Immunohistochemistry and immunopathology of rSARS-CoV mutants in
lungs and brains

Infected lungs and brains (cerebrum) were further analyzed for
histological changes and for viral antigen. At day 4 p.i., viral antigen
was present in high amounts in the alveoli of mice infected with
rSARS-CoV or rSARS-CoV-Δ[6–9b], whereas it was detected in low
amounts in the alveoli of rSARS-CoV-ΔE or rSARS-CoV-Δ[E, 6–9b]-
infected mice (Fig. 7). Cellular infiltrates were detected in peribron-
chial regions and in the parenchyma mostly in mice infected with
viruses expressing the E protein (Fig. 7). In contrast, viral antigen was
detected throughout the central nervous system (CNS) only in mice
infected with rSARS-CoV or rSARS-CoV-Δ[6–9b], with prominent
infection of the cerebrum, thalamus and brainstem, but not the
cerebellum. In the olfactory bulb, only the mitral layer of the olfactory
bulb was infected (data not shown). The extent of labeling was nearly
the same in mice infected with rSARS-CoV or rSARS-CoV-Δ[6–9b].
Consistent with the titer data, no viral antigen was detected in the
brains of mice infected with either ΔE virus.

Discussion

Our results show that neither the E protein nor several SARS-CoV
accessory proteins (6a, 7a, 7b, 8a, 8b, and 9b) are required for virus
replication in vitro or in hACE2 Tg mice. Growth kinetics assays in
monkey and human cell lines, studies of morphogenesis by electron
microscopy, and analyses in the Tg mice all suggest that SARS-CoV E
gene is a virulence factor.

Interestingly, rSARS-CoV-Δ[6–9b] virus, in which six genes were
deleted, grew aswell as thewt virus in monkey Vero E6 cells whereas
mutants in which E gene was deleted (rSARS-CoV-ΔE, and rSARS-
CoV-Δ[E,6–9b]) showed a 20-fold titer reduction. In human cells,
titers of rSARS-CoV lacking either 6–9b or E genes were reduced up to
10- or 1000-fold, respectively, suggesting that gene E is relevant for
viral replication as previously described (DeDiego et al., 2007), and



Fig. 5. Virulence of the defective viruses. hACE2 Tgmice were intranasally infected with 12,000 pfu (A and B) or with the indicated doses (C and D) of rSARS-CoV, rSARS-CoV-Δ[6–9b],
rSARS-CoV-ΔE and rSARS-CoV-Δ[E,6–9b] viruses. Animals were monitored daily for weight (A) and mortality (B). To further analyze the virulence of rSARS-CoV-Δ[6–9b], hACE2 Tg
mice were infected with the indicated doses of rSARS-CoV or rSARS-CoV-Δ[6–9b] and weight (C) and mortality (D) monitored.
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that genes 6 to 9b have a significant, although very limited influence
on viral replication at least in some cell systems. The reduced growth
of thewt and the three deletionmutants in human as opposed to Vero
E6 cells, could be due to the absence of type 1 interferon expression in
the latter (Emeny and Morgan, 1979).

The hACE-2 Tg mice is a suitable animal model to evaluate the
virulence of the defective viruses, as it has been shown that all the
animals died even when infected with low doses of wt SARS-CoV.
Using highly susceptible hACE-2 Tg mice, we found, surprisingly, that
virus titers of wt virus and rSARS-CoV-Δ[6–9b], were similar in both
the lung and brain. Furthermore, weight loss and survival curves were
also similar, indicating that rSARS-CoV-Δ[6–9b] is not significantly
attenuated in these mice. The virulence of the Δ[6–9b] deletion
mutant came as a surprise as in the Coronaviridae, the functions of the
group specific ORFs are generally associated with counteracting host
defenses. In fact, recombinant MHV, feline infectious peritonitis virus
(FIPV) and transmissible gastroenteritis virus (TGEV) lacking one or
more of these group specific ORFs efficiently replicate in cell culture
but are attenuated in vivo (de Haan et al., 2002; Haijema et al., 2004;
Ortego et al., 2003). On the other hand, the virulence of rSARS-CoV-
Δ[6–9b] virus is in agreement with previous results showing that
recombinant SARS-CoVs individually lacking each of the group
specific genes 3a, 3b, 6, 7a, and 7b were not significantly impaired
in replication in vitro or in non-transgenic Balb/c mice (Sims et al.,
2008; Yount et al., 2005). Similarly, in the MHV system, it has been
shown that deletion of ORF 4 in MHV does not affect virulence
(Ontiveros et al., 2001).

Titers of E protein deletion mutants (rSARS-CoV-ΔE and rSARS-
CoV-Δ[E,6–9b]) in the lungs of hACE2 Tg mice were about 100-fold
lower than in mice infected with wt virus or virus lacking genes 6 to



Fig. 6. In vivo growth kinetics of the variant viruses. hACE2 Tg mice were intranasally
inoculated with 12,000 pfu. At 2 and 4 days post-infection, lung (A) and brain (B) tissues
were harvested and viral titers were analyzed in Vero E6 cell monolayers. Numbers over
bars indicate numbers of mice with detectable virus in relation to the total number of
examined mice. Absence of numbers indicate that virus was detected in all examined
animals. Black bars, SARS-CoV; gray bars, rSARS-CoV-Δ[6–9b], black dashed bars,
rSARS-CoV-ΔE, and gray dashed bars, rSARS-CoV-Δ[E, 6–9b].
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9b. The observed reduction in virus titers probably is only partially
responsible for the attenuated phenotype of the ΔE viruses, as we
showed that viruses lacking E gene did not spread to the central
nervous system, even when the virus was intracranially inoculated
(data not shown). These data suggest that gene E is important for virus
tissue tropism. Changes in virus tissue tropism frequently are an
important cause of virus attenuation as shown for other coronaviruses
such as TGEV, in which loss of virulence is associated with loss of
enteric tropism (Sanchez et al., 1999). Similarly, live poliovirus
vaccines are attenuated because of their reduced neurotropism with
a concomitant increase in enteric growth (Sutter et al., 2004). It is
likely that the infection of the central nervous system is a major factor
contributing to the fatal outcome observed for SARS-CoV-infected Tg
mice (McCray et al., 2007; Tseng et al., 2007). While the brain is not
considered a major target for the virus in humans, there are reports
showing the presence of the virus in this tissue (Ding et al., 2004; Gu
et al., 2005; Xu et al., 2005). Further, some SARS survivors have
neurological and psychological sequelae that are not well understood
and could result from infection of the central nervous system (Lee
et al., 2004; Xu et al., 2005). The molecular mechanism involved in
the attenuation and changes in tropism of E protein deletion mutants
is under further investigation and might suggest new biological func-
tions for the E protein.
SARS-CoV lacking E gene is attenuated in the highly sensitive
hACE-2 Tg mice model and in hamsters (DeDiego et al., 2007;
Enjuanes et al., 2008a) suggesting that SARS-CoV mutants defective
in E gene may also be attenuated in other species including humans.
Accordingly, the induction of protection conferred by these viruses
has been studied in hamsters showing complete protection. There-
fore, these deletion mutants could be considered promising vaccine
candidates. Nevertheless, more detailed experiments in this and
other animal models, including non-human primates, are needed in
order to further evaluate the safety and efficacy of these attenuated
viruses as vaccine candidates. Another application of these geneti-
cally attenuated viruses of practical interest is their use as the
starting material for the generation of chemically inactivated
vaccines. Thus, in the event of incomplete chemical inactivation of
the vaccine virus, the remaining infectious virus will be highly
attenuated, reducing the likelihood of untoward consequences
(Kong et al., 2005; Qin et al., 2006; Qu et al., 2005; Spruth et al.,
2006; Zhou et al., 2005).

Materials and methods

Cells

African Green monkey kidney-derived Vero E6 cells, human liver-
derived Huh-7 cells, human colon carcinoma-derived CaCo-2 cells,
and the Huh7.5.1 clone derived from Huh-7 cells (Gillim-Ross et al.,
2004; Hattermann et al., 2005; Mossel et al., 2005; Zhong et al., 2005)
were kindly provided by E. Snijder (University of Leiden, The
Netherlands), R. Bartenschlager (University of Heidelberg, Germany),
the European Collection of Cell Cultures and F. V. Chisari (Scripps
Research Institute, La Jolla, California), respectively. In all cases, cells
were grown in Dulbecco's modified Eagle's medium (DMEM, GIBCO,
Grand Island, NY) supplemented with 25 mM HEPES and 10% fetal
bovine serum (FBS) (Biowhittaker, Verviers, Belgium). Virus titrations
were performed in Vero E6 cells following standard procedures using
closed flasks or plates sealed in plastic bags. For plaque assays, cells
were fixed with 10% formaldehyde and stained with crystal violet
three days post-infection. All work with infectious viruses and
infected animals was performed in biosafety level (BSL) 3 facilities
by personnel wearing positive-pressure air purifying respirators (3 M
HEPA AirMate, Saint Paul, MN).

Mice

hACE2 Tg mice were generated as previously described and were
used after backcrossing 6–9 generations to C57Bl/6 mice (McCray
et al., 2007). No differences were observed in disease or histological
outcome when mice that were backcrossed to different extents were
compared. All animal experiments were approved by the University of
Iowa Animal Use and Care Committee.

Construction of plasmids pBAC-SARS-CoV-Δ[6–9b], pBAC-SARS-CoV-ΔE,
and pBAC-SARS-CoV-Δ[E, 6–9b]

The pBAC-SARS-CoV-Δ[6–9b] plasmid encoding a rSARS-CoV
lacking accessory genes 6, 7a, 7b, 8a, 8b and 9b was constructed
using a previously described full-length infectious cDNA clone coding
for SARS-CoV, Urbani strain in a bacterial artificial chromosome (BAC)
(plasmid pBAC-SARS-CoVFL) (Almazan et al., 2006). The pBAC-SARS-
CoV-ΔE plasmid encoding a rSARS-CoV lacking the gene E was
constructed from plasmid pBAC-SARS-CoVFL as described (DeDiego
et al., 2007). The pBAC-SARS-CoV-Δ[E,6–9b] plasmid encoding a
rSARS-CoV lacking the E, 6, 7a, 7b, 8a, 8b and 9b genes was con-
structed from plasmid pBAC-SARS-CoV-ΔE. To generate plasmids
pBAC-SARS-CoV-Δ[6–9b] and pBAC-SARS-CoV-Δ[E,6–9b], deletion of
genes 6, 7a, 7b, 8a and 8b was introduced by overlap extension PCR



Fig. 7.Histopathology and immunohistochemistry. hACE2 Tgmice were intranasally inoculated with 12,000 pfu of the indicated viruses and sacrificed at day 4 p.i. Zinc formalin-fixed
lungs (left) and brain (cerebrum) (right) were analyzed for viral antigen as described in Materials and methods. Original magnification was 10×.
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using as templates the plasmids pBAC-SARS-CoVFL and pBAC-SARS-
CoV-ΔE, respectively. The final PCR products were digested with the
enzymes BamHI and NheI and cloned in the intermediate plasmid
psl1190+BamHI/SacII SARS-CoV to generate the plasmids psl1190+
BamHI/SacII SARS-CoV-Δ[6,7,8] and psl1190+BamHI/SacII SARS-CoV-
Δ[E,6,7,8]. The plasmid psl1190+BamHI/SacII SARS-CoV contains a
fragment corresponding to nucleotides 26045 to 30091 of the SARS-
CoV infectious cDNA clone (Almazan et al., 2006) engineered into
plasmid psl1190 (Pharmacia) using the unique restriction sites BamHI
and SacII. To abrogate expression of gene 9b, overlap PCR extension
was performed using as template the infectious cDNA clone (Almazan
et al., 2006). The final PCR product was digested with the enzymes
KpnI and NheI and cloned into plasmids psl1190+BamHI/SacII SARS-
CoV-Δ[6,7,8] and psl1190+BamHI/SacII SARS-CoV-Δ[E,6,7,8], to assem-
ble plasmids psl1190+BamHI/SacII SARS-CoV-Δ[6–9b] and psl1190+
BamHI/SacII SARS-CoV-Δ[E,6–9b]. Finally, fragment BamHI/SacII of
these plasmids was exchanged with that of plasmid pBAC-SARS-CoVFL

to generate plasmids pBAC-SARS-CoV-Δ[6–9b] and pBAC-SARS-CoV-
Δ[E,6–9b]. Details on the cloning can be obtained from the authors
upon request.

Transfection and recovery of infectious viruses from the cDNA clones

BHK cells grown to 90% confluence in 12.5 cm2
flasks were

transfected with 6 μg of the plasmids pBAC-SARS-CoV-Δ[6–9b], pBAC-
SARS-CoV-ΔE, and pBAC-SARS-CoV-Δ[E,6–9b], or the plasmid pBAC-
SARS-CoVFL as a control, using 18 μg of Lipofectamine 2000 (In-
vitrogen) according to manufacturer's instructions. Recombinant
viruses were cloned as described (DeDiego et al., 2007).

rSARS-CoV-Δ[6–9b], rSARS-CoV-ΔE, and rSARS-CoV-Δ[E,6–9b] growth
kinetics

Subconfluent monolayers (90% confluency) of Vero E6, Huh-7,
Huh-7.5.1 and CaCo-2 cells were inoculated at a multiplicity of in-
fection (moi) of 0.05 with the viruses rSARS-CoV, rSARS-CoV-Δ[6–9b],
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rSARS-CoV-ΔE, and rSARS-CoV-Δ[E,6–9b]. After an absorption period
of 1 h, inoculum medium was removed and fresh medium added.
Then, culture supernatants were collected at different times post-
infection and virus titers were determined as described above.

RNA analysis by RT-PCR

Total RNA fromVero E6-infected cellswas purified using theQIAGEN
RNeasy kit according to the manufacturer's instructions and used for
reverse transcription (RT)-PCR analysis. The regions comprising gene E
and genes 6 to 9b were analyzed. RT reactions were performed using
murine leukemia virus reverse transcriptase (Ambion) and the reverse
primers SARS-E231-RS (5′-TTAGACCAGAAGATCAGGAACTCC-3-), com-
plementary to nt 208 to 231 of E gene, to analyze gene E deletion and
mutations, and SARS-28397-RS (5′-GGGTAGCTCTTCGGTAGTAGCC-3′),
complementary to nucleotides 28376 to 28397 of the SARS-CoV
genome, to analyze deletion of genes 6 to 8b and 9b mutations.
The cDNAs were amplified by PCR using sense primers SARS-25211-VS
(5′-GGATGACTCTGAGCCAGTTCTCAAGGG-3′), complementary to
nucleotides 25212 to 25238 of SARS-CoV genome and SARS-27024-VS
(5′-CGCCGGTAGCAACGACAATATTGC-3′), complementary to nucleo-
tides 27025 to 27048, and the reverse primers indicated above. RT-
PCRproductswere visualizedbyelectrophoresis in 0.8%agarosegels and
sequenced using the primers used for the RT-PCR reactions.

Electron microscopy

For conventional electron microscopy, Vero E6 cell monolayers
were infected with rSARS-CoV, rSARS-CoV-Δ[6–9b], rSARS-CoV-ΔE,
and rSARS-CoV-Δ[E,6–9b] at a moi of 0.5. Cells were fixed in situ 20 h
post-infection with 2% glutaraldehyde in phosphate Na/K buffer (pH
7.4) for 1 h at room temperature. Cells were removed and transferred
to Eppendorf tubes. After centrifugation, cells were washed three
times in phosphate Na/K buffer (pH 7.4) and processed for embedding
in Epoxy, TAAB 812 resin (TAAB Laboratories, Berkshire, England)
according to standard procedures (DeDiego et al., 2007). Ultrathin
sections of the samples were stained with saturated uranyl acetate
and lead citrate and examined at 80 kV in a Jeol JEM-1010 (Tokyo,
Japan) electron microscope.

For negative staining electron-microscopy, supernatants of Vero E6
cells infected for 20 h were fixed with 10% formaldehyde, concen-
trated using a Beckman airfuge, negatively stained and examined by
electron microscopy as described (DeDiego et al., 2007).

Virus replication in Tg mice expressing hACE-2

Mice were lightly anesthetized with isoflurane and inoculated
intranasally with the indicated doses of virus in 30 μl of DMEM.
Infected mice were examined and weighted daily. In parallel expe-
riments, to obtain tissues for virus titrations, animals were sacrificed
at 2 and 4 days post-infection and lungs and brains were aseptically
removed into phosphate buffered saline (PBS). Tissues were homo-
genized using a manual homogenizer, and titrated in Vero E6 cells as
described above. Virus titers are expressed as pfu/g tissuewith a lower
limit of detection of 420 pfu/g.

Histopathological examination of brains and lungs of infected mice

Brains (cerebrum) and lungs were removed from mice at 4 days
p.i., fixed in zinc formalin and processed as described previously
(McCray et al., 2007). For routine histology, sections were stained
with hematoxylin and eosin. To detect virus antigen, cells were
pretreated with 3% hydrogen peroxide and stained with biotinylated
mouse anti-nucleocapsid mAb (kindly provided by Dr. John Nicholls,
University of Hong Kong), followed by streptavidin-HRP (Jackson
Immunoresearch, West Grove, PA). Slides were developed with dia-
minobenzidine and counterstained with nuclear fast red (lungs) or
hematoxylin (brains).
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